Contents

	Preface xi
	List of Abbreviations xiii
1	Graphene-Based Materials: Structure and Properties 1
	Xiaoyang Deng and Yue Li
1.1	Introduction to Carbon Materials 1
1.2	History of Graphene 5
1.3	Structure of Graphene 6
1.4	Properties of Graphene 7
1.5	Structure Defects of Graphene 9
1.5.1	Carbon Adatoms Defects 10
1.5.2	Graphene Extrinsic Defects 11
1.6	Different Dimensional Graphene 12
1.6.1	3D Graphene Architectures (3DG) 14
1.7	Graphene Composites 15
1.7.1	Graphene/Conductive Polymer Composites 15
1.7.2	Graphene/Inorganic Composites 16
1.8	Applications of Graphene 17
	References 18
2	Graphene Synthesis: An Overview of Current Status 25
	Simi Sui
2.1	Top-Down Approaches 25
2.1.1	Mechanical Cleavage 25
2.1.2	Exfoliation 26
2.1.2.1	Liquid Exfoliation 26
2.1.2.2	Solid Exfoliation 27
2.1.2.3	Oxidation-Exfoliation-Reduction 27
2.1.2.4	Intercalation Exfoliation 28
2.2	Bottom-up Approaches 29
2.2.1	Epitaxy Growth 29
2.2.1.1	Direct Thermal Annealing 29
2.2.1.2	Molecular-Beam Epitaxy (MBE) 29

i	Contents	
	2.2.2	Chemical Vapor Deposition on Metal Substrate 29
	2.2.3	CVD on Nanoporous Metal Template 31
	2.2.4	Powder Metallurgy Template Method 31
	2.2.5	Soluble-Salt-Template Methods 32
	2.2.6	Other Methods 33
	2.2.6.1	CNTs Unzipping 33
	2.2.6.2	Molecular Self-Assembly 33
	2.2.6.3	Laser Ablation 34
	2.2.6.4	Pyrolysis of Solid Carbon Sources 34
		References 35
	3	Nanoporous Metal Template Methods 41
		Kaiqiang Qin
	3.1	Introduction 41
	3.2	Dealloying Method for the Preparation of Nanoporous Metal Foil 41
	3.3	Nanoporous Ni as the Substrate for the Growth of 3D Nanoporous
	2.2.1	Graphene 42
	3.3.1	3D Nanoporous Graphene 42
	3.3.2	Heteroatoms-Doped 3D Nanoporous Graphene 44
	3.3.2.1	N-Doped 3D Nanoporous Graphene 44
	3.3.2.2	N, S Co-Doped 3D Nanoporous Graphene 46
	3.3.2.3	N, S, P Tri-Doped 3D Nanoporous Graphene 47
	3.3.2.4	N and Ni Single Atoms Co-Doped 3D Nanoporous Graphene 47
	3.3.2.5	Li Metal Anode Application of 3D Nanoporous Graphene 48
	3.3.3	3D Nanoporous Craphone Paged Composite Materials 40
	3.3.4	3D Nanoporous Graphene-Based Composite Materials 49
	3.4	Nanoporous Cu as the Substrate for the Growth of 3D Nanoporous Graphene 49
	3.4.1	Continuously Hierarchical Nanoporous Graphene 49
	3.4.2	Heteroatoms-Doped 3D Nanoporous Graphene 51
	3.4.3	3D Nanoporous Graphene-Based Composites 54
	5. 1.5	References 57
	•	
	4	Soluble-Salt-Template Methods 61
	4.1	Ming Liang and Chunnian He
	4.1	Salt-Template Methods 61 The Effects of Different Vinds of Salts 62
	4.1.1	The Association Mathed of Salts 62
	4.1.2	The Other Important Influencing Parameters 72
	4.1.3	The Other Important Influencing Parameters 72
	4.2	Salt-Template-Directed Graphene-Based Materials 73
	4.2.1	2D Graphene-Based Materials 73
	4.2.2	3D Porous Graphene-Based Materials 78
	4.3	Outlook 86
		References 87

5	Powder Metallurgy Templates Methods 95
	Junwei Sha, Xiaoyu Chu, Yuxuan Wang, Meixian Li, Chunnian He, and Naiqin
	Zhao
5.1	Powder Metallurgy 95
5.2	Powder Metallurgy Templates Methods 96
5.2.1	Basic Synthesis Procedures of PMT Method 96
5.2.2	The Selection of Metal Templates 97
5.2.3	The Selection of Carbon Sources 102
5.2.4	The Influence of Metal Templates/Carbon Sources Ratio 103
5.2.5	The Influence of Heating Temperature and Heating Method 104
5.2.6	The Influence of Cold-Pressing Pressure 105
5.3	Mechanism of Powder Metallurgy Templates Method 106
5.4	3D GM and Its Composites Prepared by PMT Method 108
5.5	Additive Manufacturing 113
5.6	Outlook for PMT and Additive Manufacturing Method 118
	References 118
6	Graphene-Based Materials for Lithium/Sodium-Ion
	Batteries 123
	Biao Chen
6.1	Introduction 123
6.2	Graphene-Based Insertion Composites 125
6.2.1	TiO ₂ /Graphene Composites 125
6.3	Graphene-Based Alloying-Type Composites 131
6.3.1	Metal/Graphene Alloy-Type Composites 131
6.3.2	Nonmetal/Graphene Alloy-Type Composites 136
6.4	Graphene-Based Conversion-Type Composites 139
6.4.1	Transition Metal Oxides/Graphene Composites 139
6.4.2	Transition Metal Sulfides/Graphene Composites 142
6.4.2.1	Conventional Metal Sulfides/Graphene Composites 142
6.4.2.2	2D Metal Disulfides/Graphene Composites 146
6.5	Summary and Outlook 151
	References 152
7	Graphene-Based Materials for Lithium-Metal Batteries 163
•	Rui Zhang
7.1	Graphene-Based Nanoscale Layers 166
7.2	Graphene-Based Hosts for Li Storage 169
7.2.1	Graphene-Based Hosts with High SSA 170
7.2.2	Free-Standing 3D Graphene-Based Hosts 170
7.3	Heteroatom-Doped Graphene for Uniform Lithium Nucleation 174
7.4	Graphene Combined with Other "lithiophilic" Materials 179
7.5	Outlook 183
_	References 183

8	Graphene-Based Materials for Li-S Batteries 189
	Ning Wang
8.1	Development History of Li-S Batteries 189
8.2	Working Mechanism of Li-S Battery 190
8.3	Challenges of Li-S Batteries 191
8.4	Overview of the Graphene as Host for S 193
8.4.1	High-Quality Graphene 194
8.4.2	Heteroatom-Doped Graphene 195
8.4.3	Functionalized Graphene 197
8.4.4	Structure-Designed Graphene 197
8.4.5	Graphene-Based Composites 199
8.4.6	Metal Compound Anchored on Graphene 201
8.4.7	Metal Compounds Anchored on Carbon Composite Material 204
8.4.8	Graphene Used in Separator 206
8.4.8.1	Carbon Material as a Coating Layer 207
8.4.8.2	Carbon Material/Inorganic Metal Compound Composite as a Coating
	Layer 208
	References 210
9	Graphene-Based Materials for Supercapacitors 215
	Shan Zhu, Chunnian He, and Naiqin Zhao
9.1	Supercapacitor 215
9.1.1	Fundamentals 215
9.1.2	Mechanism 216
9.1.3	Comparison Between Supercapacitor and Li-Ion Battery 218
9.1.4	Influencing Factors of Carbon-Based Supercapacitor 219
9.2	Graphene-Based Supercapacitor 221
9.2.1	Advantages of Graphene Used in Supercapacitors 221
9.2.2	Improving the Performance of Graphene-Based Supercapacitors 222
9.2.2.1	Design of Graphene Electrode 222
9.2.2.2	Heteroatom-Doping of Graphene 224
9.2.2.3	Constructing 3D Graphene by Template Method 225
9.2.2.4	Introducing Composition on Graphene 226
9.2.3	Advanced Graphene-Based Supercapacitors 230
9.2.3.1	Electrolyte Design 230
9.2.3.2	Asymmetric Supercapacitors 230
9.2.3.3	Metal-Ion Capacitor 232
9.2.3.4	Flexible Supercapacitor 233
9.2.3.5	Microsupercapacitor 236
9.3	Future Prospects 237
	References 239
10	Graphene-Based Materials for Electrocatalysis 245
	Lechen Diao and Chunnian He
10.1	Introduction 245

10.2	Preparation of Graphene-Based Materials for Electrocatalysis 246
10.2.1	Heteroatom Doping Graphene-Based Materials 247
10.2.1.1	Single Doping Graphene 249
10.2.1.2	Multidoping Graphene 252
10.2.2	Edge and Defect Sites 253
10.2.3	Graphene as Supports 256
10.2.4	Template Method Synthesis of Graphene-Based Electrocatalysts 259
10.3	Application of Graphene-Based Electrocatalysts 260
10.3.1	Graphene-Based Electrocatalysts for Water Splitting 260
10.3.2	Graphene-Based Electrocatalysts for ORR 262
10.3.3	Graphene-Based Electrocatalysts for CO ₂ RR 264
10.3.4	Graphene-Based Electrocatalysts for NRR 266
10.4	Outlook 268
	References 268

Index 275